Перевод: с английского на все языки

со всех языков на английский

часть архитектуры

  • 1 instruction set

    набор команд [процессора], система команд
    совокупность всех машинных команд ( machine instruction), которые исполняются данным процессором. Наборы команд разных процессоров отличаются друг от друга. Сами команды различаются по типам операций, а также могут делиться на привилегированные (privileged instruction) и непривилегированные (nonprivileged instruction). Типичный набор состоит из арифметических и логических команд, команд пересылки данных, команд управления и ввода-вывода. Набор команд - составная часть архитектуры процессора, видимая программисту, и может рассматриваться в качестве интерфейса между программным и аппаратным обеспечением. Существуют RISC-, CISC- и VLIW-архитектуры.
    Syn:

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > instruction set

  • 2 instruction set architecture

    = ISA
    описывает набор машинных команд и видимую программисту часть архитектуры процессора, необходимую ему для написания программы, т. е. абстрагирует для программиста интерфейс между аппаратурой компьютера и нижним уровнем программного обеспечения. Этот уровень архитектуры компьютера называют также уровнем машинного языка (machine language).

    Each subsequent ISA is a superset of the previous one, thus a programmer can compile code using the base MIPS I ISA and this binary will run on all MIPS processors. — Каждая последующая ISA представляет собой расширение предыдущей, так что можно скомпилировать программу, используя базовую архитектуру процессора MIPS I, причём полученный код будет исполняться на всех процессорах MIPS см. тж. instruction set

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > instruction set architecture

  • 3 APPC

    [Advanced Program-to-Program Communications] усовершенствованный интерфейс связи между программами (протокол, разработанный IBM как часть архитектуры SNA, аналогичный сеансовому уровню в модели OSI)

    Большой англо-русский и русско-английский словарь > APPC

  • 4 Network management interface

    Сетевые технологии: интерфейс сетевого управления (Часть архитектуры внутренней магистрали (backplane bus) концентратора, обеспечивающая связь между модулями сетевого управления и остальными устройствами ЛВС)

    Универсальный англо-русский словарь > Network management interface

  • 5 network management interface

    Сетевые технологии: интерфейс сетевого управления (Часть архитектуры внутренней магистрали (backplane bus) концентратора, обеспечивающая связь между модулями сетевого управления и остальными устройствами ЛВС)

    Универсальный англо-русский словарь > network management interface

  • 6 APPC

    сокр. от Advanced Program-to-Program Communications

    English-Russian dictionary of computer science and programming > APPC

  • 7 addressing system

    часть архитектуры компьютера. Включает в себя организацию памяти компьютера, режимы адресации и архитектуру набора команд

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > addressing system

  • 8 APPC

    (Advanced Program-to-Program Communications) усовершенствованный интерфейс связи между программами, протокол APPC
    набор протоколов (примерно соответствующих представительскому и сеансовому уровням семиуровневой модели OSI), разработанный IBM в 1992 г. как часть архитектуры "новой" SNA. Поддерживает одноранговые коммуникации между рабочими станциями, подсоединёнными к SNA, и приложениями, исполняемыми на этих станциях. Известен также под названием LU 6.2. Сейчас используется для реализации распределённых служб в гетерогенной компьютерной среде; устанавливает и разрывает соединения между взаимодействующими программами. Имеет два интерфейса, программный и обмена данными; первый реагирует на запросы программ, требующих коммуникации, а второй устанавливает сеансы связи между программами

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > APPC

  • 9 interrupt

    = INT
    механизм, реализуемый в виде посылаемых центральному процессору специальных сигналов и микропрограмм, позволяющий ему реагировать на события внешнего мира (изменение состояния системы или самого ЦП) или особые состояния исполняемой в данный момент программы. Можно сказать, что прерывание - асинхронное внешнее или внутреннее событие, требующее от ЦП обслуживания, - оно может произойти во время исполнения машинной команды, до его начала или после завершения исполнения (см. instruction cycle). Прерывание, если оно принято процессором, вызывает прекращение обработки текущей программы, сохранение в стеке состояния процессора и регистров и передачу управления специальной программе обработки конкретного вида прерывания (ISR). По завершении обработки происходит восстановление состояния регистров и процессора и управление обычно возвращается прерванной программе. Существуют различные классы прерываний: аппаратные (hardware interrupt), программные (software interrupt), ввода-вывода (от дисководов, клавиатуры, последовательного порта, мыши и т. д.) и от таймера (timer interrupt). Различают прерывания маскируемые (maskable interrupt) и немаскируемые (nonmaskable interrupt), в зависимости от того, может ли быть отложено обслуживание конкретного вида прерываний. Например, нельзя маскировать прерывания по исчезновению питания и сбросу системы. Для ввода сигнала прерывания в процессор у него имеется один или несколько специализированных выводов (ножек), кроме того, схемы, формирующие сигнал прерывания могут выставлять на шине данных номер прерывания. Конкретная реализация системы прерываний - составная часть архитектуры процессора.

    Interrupts allow the microcontroller to interact with its environment. — Прерывания позволяют микроконтроллеру взаимодействовать со окружающим его оборудованием см. тж. clock interrupt, context switching, error interrupt, external interrupt, idle interrupt, internal interrupt, interprocessor interrupt, interrupt acknowledge, interrupt condition, interrupt controller, interrupt disable, interrupt dispatcher, interrupt-driven, interrupt enable, interrupt event, interrupt flag, interrupt handler, interrupt input, interrupt latency, interrupt level, interrupt line, interrupt list, interrupt mask, interrupt number, interrupt priority, interrupt response, interrupt source, interrupt trap, interrupt vector, INTR, I/O interrupt, IRET, IRQ, missed interrupt, multiple interrupts, nested interrupt, pending interrupt, vectored interrupt

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > interrupt

  • 10 APPC

    Advanced Program-to-Program Communication улучшенная система обмена программа-программа Протокол, разработанный IBM как часть архитектуры SNA. Он аналогичен сеансовому уровню в модели OSI.

    English-Russian dictionary of computer abbreviations and terms > APPC

  • 11 service orchestration

    букв. оркестровка сервисов; гармоничное комбинирование (взаимодействие) сервисов (служб)
    часть архитектуры SOA - этим термином обозначается то, как сервисы (службы) взаимодействуют друг с другом на уровне сообщений, включая бизнес-логику и кооперацию при выполнении сложных процессов в пределах одного предприятия; основывается на открытых стандартах для создания бизнес-процессов
    см. тж. SOAD

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > service orchestration

  • 12 service repository

    часть архитектуры SOA, главное хранилище метаданных с описаниями возможностей и функций сервисов (служб) предприятия
    см. тж. SOAD

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > service repository

  • 13 personal computing systems architecture

    1. архитектура систем на основе ПЭВМ
    2. архитектура персональных вычислительных систем

     

    архитектура персональных вычислительных систем

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    архитектура систем на основе ПЭВМ
    Составная часть архитектуры NAS фирмы DEC, обеспечивающая интеграцию ПЭВМ и доступ к распределенным данным в неоднородной сетевой среде.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > personal computing systems architecture

  • 14 PCSA

    1. архитектура систем на основе ПЭВМ
    2. архитектура персональных вычислительных систем

     

    архитектура персональных вычислительных систем

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    архитектура систем на основе ПЭВМ
    Составная часть архитектуры NAS фирмы DEC, обеспечивающая интеграцию ПЭВМ и доступ к распределенным данным в неоднородной сетевой среде.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > PCSA

  • 15 network management interface

    1. интерфейс сетевого управления

     

    интерфейс сетевого управления
    Часть архитектуры внутренней магистрали (backplane bus) концентратора, обеспечивающая связь между модулями сетевого управления и остальными устройствами ЛВС. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > network management interface

  • 16 NMI

    1. немаскируемое прерывание
    2. интерфейс сетевого управления

     

    интерфейс сетевого управления
    Часть архитектуры внутренней магистрали (backplane bus) концентратора, обеспечивающая связь между модулями сетевого управления и остальными устройствами ЛВС. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    EN

     

    немаскируемое прерывание

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > NMI

  • 17 safe failure

    1. безопасный отказ

     

    безопасный отказ
    Отказ, который не переводит систему, связанную с безопасностью, в опасное состояние или в состояние отказа при выполнении функции.
    Примечание
    Будут или не будут реализованы опасные последствия отказа, зависит от канальной архитектуры системы; в системах с многоканальной архитектурой, предназначенных для повышения безопасности, безопасный отказ аппаратуры приведет к ошибочному отключению с меньшей вероятностью.
    [ ГОСТ Р МЭК 61508-4-2007]

    Тематики

    EN

    3.4 безопасный отказ (safe failure): Отказ, который не приводит к переходу связанной с безопасностью системы в опасное состояние или в состояние невыполнения функции безопасности.

    Источник: ГОСТ Р 53195.3-2009: Безопасность функциональная, связанных с безопасностью зданий и сооружений систем. Часть 3. Требования к системам оригинал документа

    3.6.8 безопасный отказ (safe failure): Отказ, который не переводит систему, связанную с безопасностью, в опасное состояние или в состояние отказа при выполнении функции.

    Примечание - Будут или не будут реализованы опасные последствия отказа, зависит от канальной архитектуры системы; в системах с многоканальной архитектурой, предназначенных для повышения безопасности, безопасный отказ аппаратуры приведет к ошибочному отключению с меньшей вероятностью.

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > safe failure

  • 18 dangerous failure

    1. опасный отказ

     

    опасный отказ
    Отказ, который может привести к тому, что система, связанная с безопасностью, перейдет в опасное состояние или в состояние ошибки при выполнении функции.
    Примечание
    Будут или не будут реализованы опасные последствия отказа, зависит от канальной архитектуры системы; в многоканальных системах опасные отказы с меньшей вероятностью ведут к итоговому опасному состоянию или состоянию отказа при выполнении функции.
    [ ГОСТ Р МЭК 61508-4-2007]

    Тематики

    EN

    3.21 опасный отказ (dangerous failure): Отказ, приводящий связанную с безопасностью систему в опасное состояние или к ошибке при выполнении функции безопасности.

    Источник: ГОСТ Р 53195.1-2008: Безопасность функциональная связанных с безопасностью зданий и сооружений систем. Часть 1. Основные положения оригинал документа

    3.6.7 опасный отказ (dangerous failure): Отказ, который может привести к тому, что система, связанная с безопасностью, перейдет в опасное состояние или в состояние ошибки при выполнении функции.

    Примечание - Будут или не будут реализованы опасные последствия отказа, зависит от канальной архитектуры системы; в многоканальных системах опасные отказы с меньшей вероятностью ведут к итоговому опасному состоянию или состоянию отказа при выполнении функции.

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > dangerous failure

  • 19 switching technology

    1. технология коммутации

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > switching technology

  • 20 canopy

    ['kænəpɪ]
    1) Общая лексика: балдахин, верхняя розетка люстры, купол (парашюта), навес, накрывать балдахином, навесом, пологом, тентом, покрывать балдахином, покрыть балдахином, полог, тент, укрывать
    3) Устаревшее слово: сандрик
    4) Поэтический язык: небесный свод, свод (небесный)
    5) Военный термин: (parachute) купол парашюта, прикрытие, тент (автомобиля), фонарь кабины самолёта, чехол, фонарь (кабины ЛА), фонарь (кабины лётчика), купол из крон деревьев (напр. в джунглях), защитный экран кабины
    8) Религия: хупа (балдахин, под которым стоят жених и невеста во время еврейской свадьбы)
    10) Архитектура: козырёк (над входом в здание), навес над входом, покров (м.б. употреблено в значении "козырек, навес над входом в здание" при описании современной архитектуры или архитектуры конца XIX - начала XX века)
    11) Горное дело: зонт, навес (крепи кострового типа), перекрытие (механизированной крепи), пологий, верхняя розетка (люстры или подвеса)
    13) Металлургия: зонт вытяжной системы
    14) Электроника: розетка люстры
    15) Воздухоплавание: фонарь (кабины экипажа)
    17) Экология: лесной полог, покров (лесной или травяной), растительный покров
    18) Солнечная энергия: свод
    19) Общая лексика: навес (чаще всего типа ROPS)
    20) Авиационная медицина: фонарь (кабины)
    22) Христианство: киворий, сень
    23) Электротехника: верхняя розетка подвеса

    Универсальный англо-русский словарь > canopy

См. также в других словарях:

  • ВИЗАНТИЙСКАЯ ИМПЕРИЯ. ЧАСТЬ II — Право и Церковь Рецепция римского права в Византии. Понятие византийского права Правовая культура В. и. с начала ее истории вплоть до падения К поля была основана на рецепции классического римского права. Источники рим. права подразделялись на… …   Православная энциклопедия

  • ВИЗАНТИЙСКАЯ ИМПЕРИЯ. ЧАСТЬ III — Литература Визант. лит ра, словесность и книжность в целом составляют труднообозримый массив духовного наследия христ. империи. Его освещение предполагает обращение ко мн. видам и жанрам лит ры, в первую очередь к святоотеческой, богословской лит …   Православная энциклопедия

  • ГРУЗИНСКАЯ ПРАВОСЛАВНАЯ ЦЕРКОВЬ. ЧАСТЬ III — Народные обычаи, связанные с церковным календарем Мн. груз. сказания и обычаи были зафиксированы лишь в XIX XX вв. Трудно определить время возникновения. В наст. время большая часть обычаев, не связанных с церковной традицией, не сохранилась.… …   Православная энциклопедия

  • ГРЕЦИЯ ЧАСТЬ II — Архитектура Рассмотрение процесса развития греч. церковного зодчества по территориальному признаку достаточно условно и не учитывает целого ряда не только периферийных, но и центральных явлений. Для Г., с ее богатой античной и средневек.… …   Православная энциклопедия

  • Памятники архитектуры России (монета, часть 2) — Памятные монеты Банка России, посвящённые памятникам архитектуры России. Основная статья: Памятные монеты России Серия: «Памятники архитектуры России» Содержание 1 Часть 2 1.1 Смоленский Кремль, XI XVIII вв …   Википедия

  • Памятники архитектуры России (монета, часть 5) — Памятные монеты Банка России, посвящённые памятникам архитектуры России. Основная статья: Памятные монеты России Серия: «Памятники архитектуры России» Содержание 1 Часть 5 1.1 Деревянное зодчество (XIX XX вв.), г. Томск …   Википедия

  • Памятники архитектуры России (монета, часть 3) — Памятные монеты Банка России, посвящённые памятникам архитектуры России. Основная статья: Памятные монеты России Серия: «Памятники архитектуры России» Содержание 1 Часть 3 1.1 Соловецкий монастырь …   Википедия

  • Памятники архитектуры России (монета, часть 6) — Памятные монеты Банка России, посвящённые памятникам архитектуры России. Основная статья: Памятные монеты России Серия: «Памятники архитектуры России» Содержание 1 Часть 6 1.1 Раифский Богородицкий мона …   Википедия

  • Список утраченных памятников архитектуры Москвы — Для улучшения этой статьи желательно?: Проставить интервики в рамках проекта Интервики. Ниже представлен список утраченных памя …   Википедия

  • Памятники архитектуры России (монета, часть 4) — Памятные монеты Банка России, посвящённые памятникам архитектуры России. Основная статья: Памятные монеты России Серия: «Памятники архитектуры России» Содержание 1 Часть 4 1.1 г. Пушкин (Царское Село) XVIII в …   Википедия

  • Памятники архитектуры России (монета, часть 7) — Памятные монеты Банка России, посвящённые памятникам архитектуры России. Основная статья: Памятные монеты России Серия: «Памятники архитектуры России» Содержание 1 Часть 7 1.1 Казанский вокзал (1862 1864), г. Москва …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»